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Abstract--- The U-Matrix is a canonical tool for the display of distance 
structures in data space using emergent SOM (ESOM). The U-Matrix 
defined originally for planar map spaces is extended in this work to 
toroid neuron spaces. Embedding the neuron space in a finite but 
borderless space, such as a torus, avoids border effects of planar spaces. A 
planar display of a toroid map space disrupts, however, coherent 
U-Matrix structures. Tiling multiple instances of the U-Matrix solves this 
problem at the cost of multiple images of data points. The P-Matrix, as 
defined here, is a display of the density relationships in the data space 
using Pareto Density Estimation. While the P-Matrix is useful for 
clustering, it can also be used for a non-ambiguous display of a non 
planar neuron space.  Centering the display for high density regions and 
removing ambiguous images of data points leads to U-Maps and 
P-Maps. U-Maps depict the distance structure of a data space as a 
borderless three dimensional landscape whose floor space is ordered 
according to the topology preserving features of ESOM. P-Maps display 
the density structures. Both maps are specially suited for data mining and 
knowledge discovery. 
 

1  Introduction 
In the SOM literature one can distinguish two different prototypical 
SOM usages. The first are SOM  where the neurons are identified with 
clusters in the data space (k-means SOM). The second are SOM where 
the map space is regarded as a tool for the characterization of the 
otherwise inaccessible high dimensional data space. A characteristic of 
this SOM usage is the large number of neurons. Thousands or tens of 
thousand neurons are used. Such SOM allow the emergence of intrinsic 
structural features of the data space (ESOM)[2]. The U-Matrix is the 
canonical tool for the display of the distance structures of the input data 
on ESOM [3].  A U-Matrix is usually defined on a planar topology of 
the neuron space.  Embedding the neuron space in a finite but borderless 
space such as a torus avoids the problems of borderline neurons. Such a 
map space has, however, the disadvantage that the display of a U-Matrix 
as a planar map disrupts coherent structures.  In this paper we present an 
approach which solves this problem. The solution uses an estimation for 
data density, called Pareto Density Estimation which is aimed at the 
detection of clusters in data sets. 

 

2  SOM Notation 
It is hardly necessary to introduce Kohonen’s SOM algorithm here. 
The interested reader is referred to [1]. To avoid misunderstandings 
we  shortly  present, however, our notation for the usage of a SOM: 
data space:  D ⊂  Rn

 : the subspace of Rn  where data points of an 
application  can be observed. 

input data:  E = {x1, ... xd} with xi ∈  D the set of data presented to 
SOM  leaning algorithm

data distance: distance measure defined in the data space →×DD R+: 
dxy=  d(x,y) ≥ 0,  dij is a shorthand for   d(xi, xj)  

neurons::  M={n1, ...,  nk} a set of neurons  

weights:   each neuron is associated with a (high-dimensional) weight 
vector wi = weight(ni) ∈  D.  

weight space: W = { w1 ,…, wn}    

position of a neuron: each neuron ni has a position, i.e a vector of 
coordinates posi = pos(ni) ∈  K in the map space K.  

map space: K ⊂  Rm ,  m ≤  n  a m-dimensional space with a distance 
measure k: →×KK  R+: kij = k(pos(ni), pos(nj)) ≥ 0, 
and a  neighborhood function N.  

neighborhood  function:  a mapping M  x M x R+ → [-1 1], 
 hij(r) = h(ni,, nj, r)  with the following properties: 

 h(ni,, nj, r) ≥  h(ni, nj, r) j  i with k∀ ≠ ij >0 and r >0  
h(ni,, nj, r) = 0 ∀ nj with kij > r  compact support (kernel) 

 r is called neighborhood radius             

neighborhood: Ni = N(ni) = { nj∈  M| hij(r) 0} the set of neurons with  
non vanishing  neighborhood function h.  

≠

The neighborhood  defines a lattice of neurons in the  map 
space K  

bestmatch: D → M: bmi=bm(xi) is the neuron nb∈  M having the 
smallest data distance  to xi  . I.e.:  
nb = bm(xi)   d(xi , wb) ≤  d(xi , wj) ∀  wj∈  W. 

SOM learning: when a input vector xi  is learned, the weight of a neuron  



nl is modified as follows. Let η  [0, 1] then 
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3 U-Matrix  
A U-Matrix is originally defined on planar map spaces [3]. 
Examples of such map spaces are rectangular or hexagonal grids.  
The U-Matrix is calculated in the weight space and displayed using 
the map space. The vicinity Ui of a neuron ni is the set Ui = {nj | 
k(nj,ni) <u, nj≠ ni } for some small positive constant u.  I.e. a 
neuron’s vicinity are the closest neighbors in the map space. The 
U-height of a neuron uh(ni) is the sum of all data distances from the 
weight of ni  to the weight vectors of the neurons in Ui

∑
∈
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A visualization of all U-heights at the neuron’s coordinates in an 
appropriate way gives the U-Matrix[3]. Typical visualizations are 
colored contour plots on top of the planar SOM floor (e.g. in [9]). 

3.1 Properties of the U-Matrix 
The U-matrix delivers a “landscape” of the distance relationships of the 
input data in the data space (compare figure 5). Properties of the 
U-Matrix are:  

- the position of the bestmatches reflect the topology of the 
input space, this is inherited from the underlying SOM 
algorithm 

- weight vectors of neurons with large U-heights are very 
distant from other vectors in the data space 

- weight vectors of neurons with small U-heights are 
surrounded by other vectors in the data space 

- bestmatches are typically found in depressions  
- outliers in the input space are found in „funnels“. 

- “  s“mountain range  on a U-Matrix point to cluster 
boundaries  

- „valleys“ on  a U-Matrix point to cluster centers   
The U-Matrix realizes the emergence of structural features of the 
distances within the data space. Outliers, as well as possible cluster 
structures can be recognized for high dimensional data spaces. The 
proper setting and functioning of the SOM algorithm on the input 
data can be visually checked.  
U-Matrices have been used in a number of applications to detect 
new and meaningful knowledge in data sets. To name a few: sea 
level prediction [4], DNA–array analysis [5], customer 
segmentation in mobile phone markets [6], stock portfolio selection 
[7], and many more… 

3.2 Borderless U-Matrix 

There is, however, one problem associated with planar map spaces: 
seams. The neighborhood of neurons at the edges of a planar map space 
contains much less neurons compared to the middle of the map space. 
This leads to undesired seam effects in the SOM algorithm.  A possible 
solution for this is to connect the edges of a planar map space to form a 
toroid map space. For rectangular grids this may be regarded as the 
“Pacman universe”: to the right of the rightmost neurons are the leftmost 
neurons; to the top of the topmost neurons are the bottom most neurons.  
A planar display of such a toroid U-Matrix cuts, however, through 
structures that cross the planar borders. 
We show this using an example data set, called “Hepta”.  Figure 1 shows 
this data set. Hepta set consists of  72 points in seven clusters of ten points 

 
Figure 1: The Hepta data set 

each,  plus two additional points for the center cluster. The centroids of 
the clusters span the coordinate axes of the R3. The density of the central 
cluster is about twice as big as the density of   the other six clusters. 
In our research group’s U-Matrix tool, called Bionic Data Mine (BDM)  
we had implemented a method to depict a toroid U-Matrix: four 
adjoining pictures of the same U-Matrix. This is called a tiled display. In 
the center of this display emergent structures can be seen that would 
cross the edges of a simple planar display of the toroid U-Matrix.  
Figure 2 shows a top view of  a  tiled display U-Matrix for Hepta  on a  
toroid  64 by 64 SOM. Large U-heights are shown in white, small 
U-heights in black. At least in the center the structures that cross the 
border of a single display are visualized coherently. The limits of the 
planar display are added to demonstrate the disruption of coherent toroid 
structures.  
With such a tiled display, however, U-Matrix structures are repeated and 
there is no obvious region to focus on. The tiled display has also the 
disadvantage, that each input data point is represented on multiple 
locations. This makes it difficult to grasp the intrinsic structure of the data 
set in particular for an inexperienced user. 

http://dict.leo.org/?p=T8PXU.&search=mountain
http://dict.leo.org/?p=T8PXU.&search=range


Figure 2:  Tiled display of a U-matrix of  Hepta on a toroid ESOM 

4 Pareto Density Estimation 
In the next chapter, we present a new visualization for structural 
features of data spaces using ESOM. This tool is called P-Matrix.  
For this, the definition of a density estimation method especially 
designed for the usage with ESOM.  
Density estimation is the construction of an estimate of the 
probability density that generated the data. Within the context of 
SOM a distance measure in data space is given.. Data density may 
thus be estimated by dividing the number of points within a 
hypersphere by the volume of the hypersphere. Volume calculation 
is, however, problematic for high dimensional data due to the so 
called “curse of dimensionality”[16]. If the radius of the hypersphere 
is kept constant, the number of points included is proportional to the 
density. This type of density estimation is a special case of kernel 
density estimation using a fixed kernel bandwith[10]. Such uniform 
kernel estimates can approximate the true probability up to any 
desired degree of accuracy, if the true probability is known[11]. The 
choice of this radius is, however, critical. A too small radius overfits, 
a too large radius oversmoothes the density estimation.   
We propose to use a radius that fulfills an optimality criterion with 
respect to information. Let S be a subset of a set of n points with |S| = 
s the number of elements in S, then p = s/n is the relative size of the 
set. If there is an equal probability that any point x is observed then p 
= p(x ∈  S). Information theory defines the (partial) information I(S) 
of a set using p. Scaled to the range [0,1], the information of a set is 
calculated as I(S) = - e p ln(p) [13]. See figure 3 for a graph of I(S).  
To find an optimal set size, define the unrealized potential URP(S) of 
a set as the Euclidian distance from the ideal point, i.e. an empty set 
producing 100% of information. This definition of URP(S) gives: 

URP(S) = ))pln(e1(p 22 ++ [8]. URP(S) can be seen in figure 

3 as the length of the line starting at point (0,1) and ending at I(S).  

 
Figure 3: Information I(S) and unrealized potential URP(S) 

Minimizing the unrealized potential results in an optimal set size of 
pu = 20.13%. This set size produces 88% of the maximum 
information. The optimality of this set at about (20%, 80%) might 
be the reason behind the so called Pareto 80/20 law, which is 
empirically found in many domains [14]. Therefore density 
estimation using volumes with an expected average of pu points are 
called Pareto (probability) Density Estimation (PDE). The radius of 
hyperspheres with this property (Pareto spheres) is called the Pareto 
radius rp. 
Subsets (volumes) which contain in the average pu data points are 
optimal in the sense that they yield with minimal set size as much 
information as possible. 

5. Density estimation for cluster in data 
This chapter presents some empirical properties for the usage of 
PDE to measure data density in data sets which contain clusters. 
We found in 1000 repeated experiments with random N(0,1) 
distributed data points that the 18 percentile of all distances is the 
Pareto radius. This radius may therefore be used for data sets with an 
presumably Gaussian inner cluster structure.  
The quality of PDE was tested on a two cluster experiment: in1000 
experiments 500 data points were drawn form a N(0,1) distribution 
and 500 from a N(20,1) distribution. This gives data sets which 
contain two natural clusters of known data density.  Data density in 
these sets was estimated by hypersphere density estimations using 
all percentiles of the data distances as radius. Figure 4 shows the 
mean +/- standard deviation of the mean sum of squared differences 
(MSSE) between the true density and the estimated density. It turned 
out, that PDE is the optimal data density estimation. 
Since data clusters may overlap, hypersphere density estimations for 
overlapping clusters were performed. Overlap is defined as the 
integral of the probability density function common to both clusters. 
A t-test with alpha level of 5% rejects the hypothesis that PDE is the 



best density estimation up to an overlap ≥ 18%. It can be concluded 
that up to about 20% of common points, PDE is optimal to identify 
clusters.  

 
Figure 4: Quality of density estimation using hyperspheres 

The distribution of the distances is, however, strongly influenced by 
the inner cluster variances. In 1000 repeated experiments with 
different inner cluster variances we found that within a range of 0.1 
to 20 PDE stays very close to the best hypersphere density 
estimation. For high data dimensions we found that PDE, while still 
being close to the best density estimation, systematically 
overestimates low densities and overestimates high densities. This is, 
however, a well known property of all density estimations with 
fixed kernel width [10].All these experiments show that PDE is a 
very good density estimation especially suited for the detection of 
clusters. This is in particular true within the setting of SOM usage.  

6 P-Matrix 
The P-Matrix on a SOM is defined analogously to a U-Matrix 
using a measure of data density, such as PDE(wi), as P-height at the 
coordinates of neuron ni.. The P-heights are displayed at the neuron’s 
coordinates. This means, at the position of each neuron a density 
estimation for the data space is displayed. The P-Matrix on a ESOM 
shows a landscape of density relationships ordered by the topology 
preserving properties of the ESOM.   

6.1 Properties of a P-Matrix 
The P-Matrix displays the number of input data points in a hypersphere 
with the Pareto radius around each weight vector of  a  neuron. Properties 
of the P-Matrix are:  

- the position of the bestmatches reflect the topology of the 
input space, this is inherited from the underlying SOM 
algorithm 

- neurons with large P-heights are situated in dense regions of 
the data space  

- neurons with small P-height are  “lonesome” in the data 
space 

- outliers in the input space are found in „funnels“. 

- “ditches” on a P-Matrix point to cluster boundaries  
- „plateaus“ on a P-Matrix point to cluster centers 

One can see, that many, but  not all, properties of the P-matrix are the 
inverse of  the U-matrix. In contrast to the U-matrix , which is based 
on the distance structure of the data space, the P-Matrix is based on 
the data’s density structure. This gives a new and complementary 
insight into a high dimensional data space. 

7 U-Maps  
The highest regions on a P-matrix provide a natural starting point for 
a visual investigation into a high dimensional data space. Such 
regions correspond to the most dense regions in the data space. In 
order to remove duplicates from a tiled display of a borderless 
U-Matrix , the region with the largest  P-heights is used as the center 
region. The adjoining region of the U-Matrix with the second largest 
integrated P-height is added next. Other regions are added 
successively according to this criterion. The algorithm terminates if 
there is precisely one image of each bestmatch. This leads to a 
U-Matrix landscape with curved boundaries. The resulting 
landscapes resemble islands or continents (see figure 6). The center 
of this landscape represents the most dense data regions.  
The obvious resemblance with geographical landscapes led us to 
call this display a U-Map. A P-Map is constructed from a U-Map 
using the corresponding P-Matrix. The resemblance of U-Maps to 
geographical maps or landscapes may be enhanced by computer 
graphical means such as texturing, coloring and lightening.  The 
following shows the U-Map for the Hepta data. One can see that the 
regions are grouped around the central cluster containing the 12 
points. 

 
Figure 5: U-Map of the Hepta data  

PDE 



Figure 6 shows a U-Map of a real world data set. The data used consists 
of a sample of about 300.000 customer data records. The data was 
provided by Swisscom AG, Bern, Switzerland (see [6] for details). 
Twenty variables concerning the usage of the Swisscom Mobile 
telecommunication network were used. A toroid U-Matrix with neurons 
of a on a rectangular grid ESOM of size 128 by 128 was constructed. 
The U-Map yielded valuable insights into the customer structure of the 
mobile phone markets. It has been used for the prediction of churning 
and for market segmentation  [6]. 

8. Conclusions 
This paper defines some new tools for the discovery of structures in 
high dimensional data sets based on emergent SOM (ESOM) 
technology. The well known U-Matrix defined originally for planar 
map spaces is extended to toroid neuron spaces. Planar maps exhibit 
border effects. Borderless neuron spaces, such as toroid spaces, 
avoid this unwanted effect. In this work we present a new method 
for the display of borderless toroid neuron spaces.  For this we 
introduce a data density estimation method, called Pareto Density 
Estimation (PDE), which is based on the distribution of the data 
distances given in the context of SOM usage. While PDE optimizes 
an information theoretic criterion, it turned out that PDE is also a 
optimal for density estimation in data sets containing cluster. 
Experimental results confirmed this for a wide variation in cluster 
number, overlap and dimensionality.  
With PDE a new visualization tool called P-Matrix could be defined 
displaying the density structure of the input data set. The P-Matrix 
can be used as a complementary tool for the detection and definition 
of clusters in the data. Furthermore it can be used to define centers 
and borderlines on a toroid U-Matrix display. This usage leads to 
U-Maps and P-Maps which possess all the unique properties of a 
U-Matrix but avoid ambiguous images. U-Maps depict the distance 
structure of a data space as a three dimensional landscape whose 
floor space is ordered according to the topology preserving features 
of a SOM. P-Maps show the data’s density structures. Dense data 
spaces are displayed in the very center of these maps. The 
combination of U-Maps and P-Maps facilitate the detection of 
clusters. These properties render these maps unique tools for data 
mining in high dimensional spaces.  
A nontrivial example from the domain of customer relationship 
management in telecom markets was presented. This demonstrated 
the effectiveness and beauty of the approach. The maps defined here 
are computer generated landscapes of important properties of the 
data space. Modern three dimensional picture techniques on the 
maps allow an excellent and appealing view into high dimensional 
spaces. 

Acknowledgements 
My special thanks belongs to my co-workers and students at the 
DataBionic reseach lab who provided programs, pictures and 

suggestions for this work. Special thanks to Ulrich Penndorf und 
Fabian Moerchen for comments on the text. 

References 
[1] T. Kohonen, “Self-Organized formation of topologically correct 
feature maps”, Biological Cybernetics, Vol.43, pp.59-69, 1982. 
[2] A.Ultsch, “Data Mining and Knowledge Discovery with Emergent 
Self-Organizing Feature Maps for Multivariate Time Series” , in: Oja, E., 
Kaski, S. (Eds.): Kohonen Maps, pp. 33 - 46. 
[3] A.Ultsch, “Self-Organizing Neural Networks for Visualization and 
Classification“, Proc. Conf. Soc. for Information and Classification, 
Dortmund, April 1992. 
[4] A.Ultsch, F. Röske, “Self-Organizing Feature Maps Prediciting Sea 
Levels”, in Information Sciences 144/1-4, Elsevier, pp 91 - 125, 
Amsterdam, 2002 
[5] A.Ultsch,  M..Eilers, “DNA Microarrays of tumors diagnosed with 
databionic methods“ ( in German) in Kooperationspartner in Forschung 
und Innovation, pp 19 - 20, Wiesbaden, 2002  
[6] A.Ultsch, “Emergent Self-Organizing Feature Maps used for 
Prediction and Prevention in Mobile Phone Markets”, in Journal of 
Targeting 10/4, Steward, pp 401 - 425, London, 2002 
[7] G. J. Deboeck, A. Ultsch, “Picking Stocks with Emergent 
Self-Organizing Value Maps”, in: Novak,M.(Ed): Neural Networks 
World,Vol 10,Nr. 1-2, pp 203 - 216 ,. 
[8] A.Ultsch, “The reasons behind Pareto’s 80/20 law and limits for an 
ABC analysis (in German), Technical Report, Nr 30, Department of 
Computer Science, Univerisity of Marburg, 2001 
[9] J. Vesanto et al.,”Self-organizing map in matlab: the SOM toolbox”, 
Proceedings of the Matlab DSP Conference, pp 35--40, Espoo, Finland, 
November, 1999 
 [10] D.W. Scott, “Mulivariate Density Estimation”, Wiley-Interscience, 
1992.  
[11] L. Devroye, G. Lugosi, ”Non-asymptotic universal smoothing 
factors kernel complexity and Yatracos classes”, Annals of Statistics, vol. 
25, pp. 2626–2637, 1997. 
 [12] L. Devroye, G. Lugosi, ”Variable kernel estimates: on the 
impossibility of tuning the parameters”, in: E. Giné and D. Mason 
(editors), High- Dimensional Probability, Springer-Verlag, New York, 
2000. 
[13] Shannon, C.E., A Mathematical Theory of Communication, The 
Bell System Technical Journal, Vol 27, pp 379-423, 1948 
[14] Juran, J.M., "Pareto, Lorenz, Carnot, Bernoulli, Juran and Others, 
Industrial Quality Control, October 1950, p. 25 
[15] Bellman, R., Adaptive Control Processes: A Guided Tour, 
Princeton,University Press, 1961 
 

http://www.mathematik.uni-marburg.de/%7Enkisec/papers/Ultsch99.pdf
http://www.mathematik.uni-marburg.de/%7Enkisec/papers/Ultsch99.pdf
http://www.mathematik.uni-marburg.de/%7Enkisec/papers/UltschEilers2002.pdf
http://www.mathematik.uni-marburg.de/%7Enkisec/papers/UltschEilers2002.pdf
http://www.mathematik.uni-marburg.de/%7Enkisec/papers/Ultsch2002a.pdf
http://www.mathematik.uni-marburg.de/%7Enkisec/papers/Ultsch2002a.pdf
http://www.mathematik.uni-marburg.de/%7Enkisec/papers/DeboeckUltsch2000.pdf
http://www.mathematik.uni-marburg.de/%7Enkisec/papers/DeboeckUltsch2000.pdf


 
Figure 6: U-Map of   telecommunication customer data 
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